Data lakes are coming on strong as a modern and practical way of managing the large volumes and broad range of data types and sources that enterprises are facing today. TDWI sees data lakes managing diverse data successfully for business-driven use cases, such as omnichannel marketing, multimodule ERP, the digital supply chain, and data warehouses extended for business analytics. Yet, even in business-driven examples like these, user organizations still haven’t achieved full business value and return on investment from their data lakes.

What’s inhibiting the business value of data lakes? The problem is not the data lake itself; a data lake is a very simple design pattern that is surprisingly easy to deploy and populate. The problem is that some users fail to give the lake and its users proper tooling in the middle layer of the architecture, which Data-as-a-Service (DaaS) can ably address. DaaS is a critical success factor because it can cope with some of the lake’s biggest challenges. First, the data of a lake is mostly raw source data that business end users have trouble understanding. Second, most lakes are deployed atop Hadoop, which is notoriously poor with business-friendly metadata and data cataloging. Third, most lakes involve environments of multiple data platforms, which make it difficult to get a unified view of available data. Finally, a data lake is a compliance infraction just waiting to happen without best practices and tool automation for data governance.

This webinar will drill into how DaaS can complete data lake architectures and contribute to the business value and ROI for a data lake:

-Most business users expect self-service access to a lake’s data, and that won’t succeed without a business-friendly data catalog and related functions. The catalog also enables governance and security features.

-Cross-platform views, processing, and data flows are required for the broad analyses, reports, and data synchronization expected by business users.

-Marketers are using DaaS with data lakes to consolidate channel, lead, and customer behavior data so advanced analytics can algorithmically join diverse data for a richer activity history, which in turn helps to identify the best prospects.

-The size and complexity of lake data is daunting to all user types; they need tool automation enabled by machine learning and artificial intelligence that can recommend datasets and processing.

-Likewise, automation for run-time data governance and security reduces the probability of noncompliance data access and use.

Hora

18:00 - 19:00 hs GMT+1

Organizador

TDWI
Compartir
Enviar a un amigo
Mi email *
Email destinatario *
Comentario *
Repite estos números *
Control de seguridad
Agosto / 2025 275 webinars
Lunes
Martes
Miércoles
Jueves
Viernes
Sábado
Domingo
Lun 28 de Agosto de 2025
Mar 29 de Agosto de 2025
Mié 30 de Agosto de 2025
Jue 31 de Agosto de 2025
Vie 01 de Agosto de 2025
Sáb 02 de Agosto de 2025
Dom 03 de Agosto de 2025
Lun 04 de Agosto de 2025
Mar 05 de Agosto de 2025
Mié 06 de Agosto de 2025
Jue 07 de Agosto de 2025
Vie 08 de Agosto de 2025
Sáb 09 de Agosto de 2025
Dom 10 de Agosto de 2025
Lun 11 de Agosto de 2025
Mar 12 de Agosto de 2025
Mié 13 de Agosto de 2025
Jue 14 de Agosto de 2025
Vie 15 de Agosto de 2025
Sáb 16 de Agosto de 2025
Dom 17 de Agosto de 2025
Lun 18 de Agosto de 2025
Mar 19 de Agosto de 2025
Mié 20 de Agosto de 2025
Jue 21 de Agosto de 2025
Vie 22 de Agosto de 2025
Sáb 23 de Agosto de 2025
Dom 24 de Agosto de 2025
Lun 25 de Agosto de 2025
Mar 26 de Agosto de 2025
Mié 27 de Agosto de 2025
Jue 28 de Agosto de 2025
Vie 29 de Agosto de 2025
Sáb 30 de Agosto de 2025
Dom 31 de Agosto de 2025

Publicidad

Lo más leído »

Publicidad

Más Secciones »

Hola Invitado