Data lakes are coming on strong as a modern and practical way of managing the large volumes and broad range of data types and sources that enterprises are facing today. TDWI sees data lakes managing diverse data successfully for business-driven use cases, such as omnichannel marketing, multimodule ERP, the digital supply chain, and data warehouses extended for business analytics. Yet, even in business-driven examples like these, user organizations still haven’t achieved full business value and return on investment from their data lakes.

What’s inhibiting the business value of data lakes? The problem is not the data lake itself; a data lake is a very simple design pattern that is surprisingly easy to deploy and populate. The problem is that some users fail to give the lake and its users proper tooling in the middle layer of the architecture, which Data-as-a-Service (DaaS) can ably address. DaaS is a critical success factor because it can cope with some of the lake’s biggest challenges. First, the data of a lake is mostly raw source data that business end users have trouble understanding. Second, most lakes are deployed atop Hadoop, which is notoriously poor with business-friendly metadata and data cataloging. Third, most lakes involve environments of multiple data platforms, which make it difficult to get a unified view of available data. Finally, a data lake is a compliance infraction just waiting to happen without best practices and tool automation for data governance.

This webinar will drill into how DaaS can complete data lake architectures and contribute to the business value and ROI for a data lake:

-Most business users expect self-service access to a lake’s data, and that won’t succeed without a business-friendly data catalog and related functions. The catalog also enables governance and security features.

-Cross-platform views, processing, and data flows are required for the broad analyses, reports, and data synchronization expected by business users.

-Marketers are using DaaS with data lakes to consolidate channel, lead, and customer behavior data so advanced analytics can algorithmically join diverse data for a richer activity history, which in turn helps to identify the best prospects.

-The size and complexity of lake data is daunting to all user types; they need tool automation enabled by machine learning and artificial intelligence that can recommend datasets and processing.

-Likewise, automation for run-time data governance and security reduces the probability of noncompliance data access and use.

Hora

18:00 - 19:00 hs GMT+1

Organizador

TDWI
Compartir
Enviar a un amigo
Mi email *
Email destinatario *
Comentario *
Repite estos números *
Control de seguridad
Mayo / 2025 314 webinars
Lunes
Martes
Miércoles
Jueves
Viernes
Sábado
Domingo
Lun 28 de Mayo de 2025
Mar 29 de Mayo de 2025
Mié 30 de Mayo de 2025
Jue 01 de Mayo de 2025
Vie 02 de Mayo de 2025
Sáb 03 de Mayo de 2025
Dom 04 de Mayo de 2025
Lun 05 de Mayo de 2025
Mar 06 de Mayo de 2025
Mié 07 de Mayo de 2025
Jue 08 de Mayo de 2025
Vie 09 de Mayo de 2025
Sáb 10 de Mayo de 2025
Dom 11 de Mayo de 2025
Lun 12 de Mayo de 2025
Mar 13 de Mayo de 2025
Mié 14 de Mayo de 2025
Jue 15 de Mayo de 2025
Vie 16 de Mayo de 2025
Sáb 17 de Mayo de 2025
Dom 18 de Mayo de 2025
Lun 19 de Mayo de 2025
Mar 20 de Mayo de 2025
Mié 21 de Mayo de 2025
Jue 22 de Mayo de 2025
Vie 23 de Mayo de 2025
Sáb 24 de Mayo de 2025
Dom 25 de Mayo de 2025
Lun 26 de Mayo de 2025
Mar 27 de Mayo de 2025
Mié 28 de Mayo de 2025
Jue 29 de Mayo de 2025
Vie 30 de Mayo de 2025
Sáb 31 de Mayo de 2025
Dom 01 de Mayo de 2025

Publicidad

Lo más leído »

Publicidad

Más Secciones »

Hola Invitado