Data lakes are coming on strong as a modern and practical way of managing the large volumes and broad range of data types and sources that enterprises are facing today. TDWI sees data lakes managing diverse data successfully for business-driven use cases, such as omnichannel marketing, multimodule ERP, the digital supply chain, and data warehouses extended for business analytics. Yet, even in business-driven examples like these, user organizations still haven’t achieved full business value and return on investment from their data lakes.

What’s inhibiting the business value of data lakes? The problem is not the data lake itself; a data lake is a very simple design pattern that is surprisingly easy to deploy and populate. The problem is that some users fail to give the lake and its users proper tooling in the middle layer of the architecture, which Data-as-a-Service (DaaS) can ably address. DaaS is a critical success factor because it can cope with some of the lake’s biggest challenges. First, the data of a lake is mostly raw source data that business end users have trouble understanding. Second, most lakes are deployed atop Hadoop, which is notoriously poor with business-friendly metadata and data cataloging. Third, most lakes involve environments of multiple data platforms, which make it difficult to get a unified view of available data. Finally, a data lake is a compliance infraction just waiting to happen without best practices and tool automation for data governance.

This webinar will drill into how DaaS can complete data lake architectures and contribute to the business value and ROI for a data lake:

-Most business users expect self-service access to a lake’s data, and that won’t succeed without a business-friendly data catalog and related functions. The catalog also enables governance and security features.

-Cross-platform views, processing, and data flows are required for the broad analyses, reports, and data synchronization expected by business users.

-Marketers are using DaaS with data lakes to consolidate channel, lead, and customer behavior data so advanced analytics can algorithmically join diverse data for a richer activity history, which in turn helps to identify the best prospects.

-The size and complexity of lake data is daunting to all user types; they need tool automation enabled by machine learning and artificial intelligence that can recommend datasets and processing.

-Likewise, automation for run-time data governance and security reduces the probability of noncompliance data access and use.

Hora

18:00 - 19:00 hs GMT+1

Organizador

TDWI
Compartir
Enviar a un amigo
Mi email *
Email destinatario *
Comentario *
Repite estos números *
Control de seguridad
Febrero / 2026 190 webinars
Lunes
Martes
Miércoles
Jueves
Viernes
Sábado
Domingo
Lun 26 de Febrero de 2026
Mar 27 de Febrero de 2026
Mié 28 de Febrero de 2026
Jue 29 de Febrero de 2026
Vie 30 de Febrero de 2026
Sáb 31 de Febrero de 2026
Dom 01 de Febrero de 2026
Lun 02 de Febrero de 2026
Mar 03 de Febrero de 2026
Mié 04 de Febrero de 2026
Jue 05 de Febrero de 2026
Vie 06 de Febrero de 2026
Sáb 07 de Febrero de 2026
Dom 08 de Febrero de 2026
Lun 09 de Febrero de 2026
Mar 10 de Febrero de 2026
Mié 11 de Febrero de 2026
Jue 12 de Febrero de 2026
Vie 13 de Febrero de 2026
Sáb 14 de Febrero de 2026
Dom 15 de Febrero de 2026
Lun 16 de Febrero de 2026
Mar 17 de Febrero de 2026
Mié 18 de Febrero de 2026
Jue 19 de Febrero de 2026
Vie 20 de Febrero de 2026
Sáb 21 de Febrero de 2026
Dom 22 de Febrero de 2026
Lun 23 de Febrero de 2026
Mar 24 de Febrero de 2026
Mié 25 de Febrero de 2026
Jue 26 de Febrero de 2026
Vie 27 de Febrero de 2026
Sáb 28 de Febrero de 2026
Dom 01 de Febrero de 2026

Publicidad

Lo más leído »

Publicidad

Más Secciones »

Hola Invitado